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Phase transition in a swarm algorithm for self-organized construction
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This paper reports on a system where very simple, noncommunicating mobile agents in a cellular~lattice!
environment use purely local rules to construct connected structures from initially randomly distributed build-
ing blocks. We study the effect of block density on the final structure, demonstrating a percolationlike phase
transition: Low block densities lead to the formation of small, disconnected structures but a single connected
structure emerges abruptly beyond a critical density. The empirical study of the structure at the transition point
shows scaling behavior, providing strong evidence for criticality. We also demonstrate that a simple change of
rules can completely change the phase-transition effect. The results have implications for the self-organized
construction of complex structures by swarms.
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I. INTRODUCTION

Recently, there has been considerable interest by ph
cists, biologists, computer scientists, and engineers in
study of swarm-based algorithms for a variety of applic
tions @1#, including the formation of emergent structur
@2–6#. The swarm approach, inspired by insect coloni
seeks methods by which simple, locally informed behav
by a large number of simple agents can lead to the em
gence of large-scale, complex organization. Such s
organization is thought to underlie the construction of str
tures such as termite and ant nests@2–6#, the formation of
near-optimal foraging patterns in ants@7,8#, and the efficient
and flexible task allocation seen in many insect colon
@9,10#. Swarm-based algorithms have several features
make them attractive for new technologies such as sm
materials, collective and reconfigurable robots, se
assembling structures, and adaptive sensor networks. Th
gorithms are inherently robust, scalable, flexible, and ea
extended. Also, by using very large numbers of simple~and
therefore cheap! agents rather than a few complex~and ex-
pensive! ones, swarm algorithms promise economies of sc
that will be necessary for many of the aforementioned te
nologies. Our results are especially relevant in the area
collective robotics@11–14#, where large numbers of autono
mous robots act cooperatively to accomplish tasks such
search, exploration, mapping, and construction.

In this paper, we report on a simple swarm technique
the construction of connected, locally linear structures
‘‘myopic’’ agents, i.e., agents that are only aware of syst
state in their immediate spatial vicinity and do not consid
long-term payoff in their decision-making. While of littl
obvious utility in their current abstract and simplistic form
such structures can form the basis of more useful ones
as might be needed by groups of robots engaged in the
struction of sensing, communication, or traffic network
1063-651X/2003/68~4!/046111~9!/$20.00 68 0461
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Such random structures may also have potential use as
folding in the swarm-based construction of more comp
structures. Here, we focus on the abstract problem and re
on some interesting characteristics of the emergent struct
produced by the algorithm. In particular, we show that t
system exhibits a phase transition and the accompan
scaling behavior—a fact that may have implications for t
success or failure of swarm-based construction algorithm
various settings.

II. BACKGROUND

Pattern formation is one of the classic problems studied
the swarm literature@1#. Rauchet al. @15# showed that ant-
like agents following simple rules for depositing and follow
ing an evaporating pheromone could, under some conditi
create networks of paths such as those seen in real ant
nies. They also showed that the model system underw
sharp bifurcations~phase transitions! as some of its param
eters were changed. Other work on swarm-based cons
tion has also shown that the emergent structures can de
fundamentally and qualitatively on system parameters@7,5#.
In the present work, we show another example of such tr
sition in the context of an extended spatial structure.
choosing an especially simple type of structure, we are a
to use the framework of percolation theory@16# and scaling
@17,18# to show quantitative evidence of structural pha
transition in our system. Classical percolation theory h
been concerned mainly with static random structur
whereas the structures we study are built over time by ag
following rules. In this sense, the present work is much m
akin to the other studies of scaling in emergent structu
such as networks@19#, bacterial colonies, and material aggr
gates@20#. It is also closely related to—and relevant for—th
currently active area of amorphous computing@21#, where
©2003 The American Physical Society11-1
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computational structures are built via self-organization@21–
24#.

There is also a significant body of work on the se
organization of robot swarms into regular formations such
lines, circles, and polygons@25–27#. Our work is peripher-
ally related to this since we consider the patterns constru
by agents using building materials rather than relationsh
among the agents themselves. Indeed, as described b
our agents are oblivious to other agents and all commun
tion in the system occurs through the pattern being c
structed. In the swarm and collective robotics literature, t
is known asstigmergy@11#, and is believed to underlie mos
construction in insect colonies@1#. Stigmergy has severa
desirable features from an applications viewpoint: It is inh
ently decentralized and, therefore, scalable; it works w
simple agents that need no communication devices or in
structure, reducing cost; and it is unobtrusive, since no c
munication traffic is generated. The main drawback is th
by giving up the option to communicate, agents can
longer engage in explicit coordination and planning. Ho
ever, in truly large-scale swarms or truly simple agen
bandwidth and cost constraints would make stigmergy
only feasible option—perhaps in combination with diffusi
signaling.

III. SYSTEM DESCRIPTION

The problem we consider isthe self-organized construc
tion of connected, locally linear structures by locally awar
noncommunicating mobile agents following simple rules.

The system comprisesn agentsthat move on aL3L grid,
picking up and depositingblocks of material based on the
state of their local neighborhood. The total number of bloc
in the system is fixed, and is denoted byN, giving a block
density D[N/L2, which is the primary parameter of interes
The set of all blocks is denoted byB5$bj%. Initially, the
blocks and agents are distributed randomly over the grid
an agent occupies a grid cell with a block, it canpick up the
block. If an agent carrying a block is in a grid cell with n
block, it candepositthe block it is carrying. Both pickup and
depositing are governed by rules as described below.
objective is to arrange the blocks such that they form a c
nected, locally linear structure covering the environment
evenly as possible. However, because the rules are trigg
purely by the agents’ local view, the global characteristics
the final block distribution must be emergent rather than
result of a global optimization process.

Each cell (x,y) in the environment has ablock occupancy
statevx,y(t), which is 1 if the position has a block and
otherwise. Cell (x,y) also has anagent occupancy stat
jx,y(t), which is an integer indicating the number of agen
in cell (x,y). The eight cells surrounding (x,y) are termed
its neighborhood, denoted byN(x,y).

A block bj in cell (xj ,yj ) is said to be aneighborof a
block bk in cell (xk ,yk) if ( xj ,yj )PN(xk ,yk) @which also
implies that (xk ,yk)PN(xj ,yj )]. This relationship is de-
noted bybj↔bk .

A block bj in cell (xj ,yj ) is said to beconnectedto a
block bl in cell (xl ,yl) if ~1! bj↔bl or ~2! ' bk
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PN(xj ,yj) such thatbk is connected tobl . If bj is connected
to bl then bl is also connected tobj . The relationship is
denoted bybj⇔bl . Note that connectedness is also tran
tive, sobj⇔bk andbk⇔bl implies bj⇔bl .

Each agenti has aloading state si(t)P$0,1% at time t,
where si(t)50 indicates that the agent is not carrying
block andsi(t)51 indicates that it is. The agent’s position
stept is given byl i(t)5„xi(t),yi(t)….

The emergent structure is evaluated for its size and c
nectivity. In particular, acluster Bk within the structure is
defined as a set of blocks$bj

k% such that~1! every block inBk

is connected to every other block in the set, and~2! no block
in the set is connected to any block not inBk. The sizeof
clusterBk equals the number of blocks in it, and is denot
uBku. Note that, at any time, the set of all clusters forms
partition of B: økB

k5B, andBk1ùBk25F ; k1Þk2. The
size of the largest cluster at timet is denoted byM (t), and
the size of the largest cluster in the final structure is deno
by M. We study the quantitys5M /N—the fraction of
blocks that are included in the largest final cluster—a
show that, under certain conditions,s shows a phase trans
tion at a critical block density.

A. Rules for pickup and deposit

We assume that, at any time, an agent can observe
distribution of blocks in a 535 square neighborhood cen
tered on its current position. However, most rules only us
333 neighborhood, and the full range of observation is us
only in a few special cases. Rules for pickup and deposit
defined using local neighborhood maps of block distributio
that would trigger the corresponding action. Thethree-view
v i

3(t)P$0,1%9 of agenti at timet is the occupancy state of it
333 neighborhood. Each bit ofv i

3(t) corresponds to a cel
in the neighborhood, with a 1 indicating the presence o
block. The first bitv i 0

3 [Vi(t) corresponds to the agent’s cu

rent location, and the remaining bits are indexed clockw
starting from the north bit. Thefive-viewv i

5(t) is defined
similarly for the agent’s 535 neighborhood, with the inne
ring indexed before the outer ring. Note thatv i 0

3 (t)5v i 0
5 (t)

[Vi(t)5v l i (t)
(t); this is termed the occupancy state of t

agent’s current position.

1. Agent movements and decisions

Agents move asynchronously and independently, w
two agents allowed to occupy the same location simu
neously. To ensure that all agents are updated regularly w
maintaining asynchronicity, the following update procedu
is used.

An update cycle, indexed byT, is defined as a pas
through the entire agent population, updating the state
each agent based on thecurrentstate of the environment an
other agents, i.e., including previous updates within the c
rent update cycle. Thus, an update cycle consists ofN time
steps, indexed byt51,2, . . . ,N. Agents are selected for up
datein random orderduring each update cycle. This ensur
that every agent is updated at least once in any window
2N21 update steps without creating fixed order effec
1-2
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Overall, time in the system is indexed byt, with t5(T
21)N1t. An agenti selected for update at stept is termed
a live agent, and goes through the following steps in s
quence.

~1! Pickup decision: If the agent is not carrying a bloc
i.e.,si(t21)50, and its current positionl i(t) is occupied by
an unpicked block, i.e.,v l i (t)

(t21)51, it makes a decision
on whether to pick up the block. If the decision is to pick u

si~ t !51, v l i (t)
~ t !50

else

si~ t !5si~ t21!, v l i (t)
~ t !5v l i (t)

~ t21!.

If the agent is already carrying a block, i.e.,si(t21)51,
there is no possibility of pickup. In that case,

si~ t !5si~ t21!, v l i (t)
~ t !5v l i (t)

~ t21!.

~2! Deposit decision: If the agent is carrying a block, i.
si(t21)51, and its current positionl i(t) is empty, i.e.,
v l i (t)

(t21)50, it makes a decision on whether to deposit
block at the new position. If the decision is to deposit,

si~ t !50, v l i (t)
~ t !51

else

si~ t !5si~ t21!, v l i (t)
~ t !5v l i (t)

~ t21!.

If the agent is not carrying a block, i.e.,si(t21)50, there is
no possibility of deposit. In that case,

si~ t !5si~ t21!, v l i (t)
~ t !5v l i (t)

~ t21!.

~3! Move decision and action: The possible moves
agenti are to the eight positions adjacent tol i(t). The pos-
sible directions of movement comprise the setm5$mk%
5$1, . . . ,8%, indicating directions clockwise withmk51 for
the cell to the north. The agent chooses directiondi(t)Pm
and moves to the corresponding position, which is deno
by l i(t11). The variabledi(t) is termed themove direction
for the agent at timet.

The choice ofdi(t) depends on the agent’s state, as d
scribed below.

For agentsj not selected for update at timet, sj (t)5sj (t
21) anddj (t)5dj (t21).

Each agent has two types of memory: adirection memory
and acounter memory. At the beginning of the simulation
both memories are empty. The direction memory isdi(t), the
direction of the agent’s last move, and the counter mem
ci(t) keeps track of the number of steps since the agent
encountered an empty cell.

2. Summary of the algorithm

Before giving a formal description of the algorithm, w
give a brief qualitative description.
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The overall goal—not explicitly known to agents—is
arrange the blocks in a connected meshlike structure.
agents focus on placing blocks so as to form locally line
structures. The linear structures should not have any sh
corners except at segment junctions. To this end, they~1!
pick up blocks that are isolated or are redundant for lo
connectivity, and~2! deposit blocks to extend existing locall
linear structures they come across. An agent coming upo
block picks it up if it is part of one of the disallowed loca
arrangements of blocks. It then carries the block until
comes upon a connected linear filament of blocks. It follo
this filament until the end and then extends it by deposit
its own block. It then moves off to look for another bloc
These rules are described formally in the following thr
sections.

3. Rules for pickup

Pickup is considered only when agenti is not carrying a
block and encounters a block at its current site.

The pickup decision can be expressed in terms of
stimulus-response rules. The triggering conditions for
rules are checked in the order given and the first condition
be satisfied produces the agent response. Conditions fol
ing this do not then need to be checked. Figures 1–4 sh
the triggering conditions for block pickup as neighborho
maps. In the maps, the grid position being considered
pickup is at the center, which is also where the agen
located. The conventions used for triggering conditions
as follows.

~1! Figure 1: To satisfy a triggering condition, blac
squares must be 1~occupied!, gray squares must be 0~un-
occupied!, and white squares may be in any occupancy s
~‘‘don’t care’’ !.

~2! Figure 2: To satisfy a triggering condition, blac
squares must be 1~occupied!, at least one of each triplet o
gray squares must be 1~occupied!, and white squares may b
in any occupancy state~‘‘don’t care’’ !.

FIG. 1. Maps triggering pickup to inhibit blob formation.
1-3



k
n

k
f
e

re
lf-
ce
fo
ar

he
d

e-

he
ing
ra-
is
ere
t do

of
eg-

he
this
nt

he
1

the
ral
us,
al
cks
ese
-

ing
en
r,

ress
es.
re-
ore
ules
up
tu-

re-
the

ng

c

he
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~3! Figure 3: To satisfy a triggering condition, blac
squares must be 1~occupied! and white squares may be i
any occupancy state~‘‘don’t care’’ !.

~4! Figure 4: To satisfy a triggering condition, blac
squares must be 1~occupied!, at least one of each triplet o
gray squares must be 1~occupied!, and white squares may b
in any occupancy state~‘‘don’t care’’ !.

It should be noted that all the triggering conditions a
based onlocal views, which is an important aspect of se
organization. The following rules are applied in sequen
and the first one to be triggered is accepted. The rules
lowing the triggered rule are then not applied. The rules
as follows.

~1! If the block at l i(t) is isolated@i.e., v i k
3 (t)50 for k

51, . . .,8], theagent picks up the center block.
~2! If v i

3(t) corresponds to one of the maps in Fig. 1, t
agent picks up the center block. The purpose here is to

FIG. 2. Maps suppressing pickup to promote formation of lo
block segments.

FIG. 3. Maps suppressing pickup to promote formation of blo
segment junctions.
04611
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courage the formation of blobs—groups of blocks with r
dundant connectivity.

~3! If v i
5(t) corresponds to one of the maps in Fig. 2, t

agent does not pick up the center block. Note that, accord
to the convention mentioned above, a triggering configu
tion in Fig. 2 is satisfied only when at least one block
present in each of its two gray cell triplets. The purpose h
is to encourage the formation of long block segments tha
not have any sharp corners. This will reduce the chance
loops being formed and therefore encourage the block s
ments to span the entire map even at low densities.

~4! If v i
3(t) corresponds to one of the maps in Fig. 3, t

agent does not pick up the new block. The purpose of
rule is to encourage the formation of appropriately efficie
~i.e., nonredundant! block segment junctions.

~5! If v i
5(t) corresponds to one of the maps in Fig. 4, t

agent does not pick up the center block with probability
2a and picks it up with probabilitya, wherea is a fixed
parameter. After the exclusions specified by Figs. 1–3,
configurations in Fig. 4 are triggered only when the cent
block is the last or the last-but-one block on a segment. Th
whena.0, terminal blocks tend to get picked up. Termin
blocks of all segments can be picked up, but such blo
represent a larger fraction of very short segments, and th
are disrupted preferentially. Thus,a.0 suppresses the pro
liferation of short segments. Thea parameter is of primary
interest in the work reported here.

~6! Agent picks up the block in all the other situations.
The intuition behind the rules triggering and suppress

pickup is the following. Fig. 2 rules suppress pickup wh
the current block could form part of a viable line. Howeve
the rules are sufficiently redundant that they also supp
pickup in some situations that produce bloblike structur
The pickup triggers in Fig. 1 eliminate these situations p
emptively, since the pickup based on Fig. 1 is applied bef
suppression of pickup based on Fig. 2. The suppression r
in Fig. 3 protect desirable junction formations. The pick
triggers in Fig. 1 and pickup suppressors in Fig. 3 are mu
ally exclusive, so the junction configurations are not p
empted by Fig. 1 rules. However, excess blocks around

k

FIG. 4. Map configurations indicating segment terminals. T
terminal block is picked up with probabilitya.
1-4
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PHASE TRANSITION IN A SWARM ALGORITHM FOR . . . PHYSICAL REVIEW E 68, 046111 ~2003!
junction are removed by Fig. 1 pickups. The heuristic und
lying the selection of certain junctions is that each junct
should be the confluence of three branches~not four!, and the
branches should be as well separated as possible aroun
junction point.

4. Rules for deposit

Deposit is considered only when agenti is carrying a
block and the current location is empty.

The condition for depositing a block depends on both
agent’s view and its recent experience as given by its di
tion and counter memories. Essentially, an agent carryin
block tries to locate a continuous line of blocks, moves alo
it until it reaches the end, and then deposits its block.

The rule for deposit is that: ifl i(t)50 ~cell has no block!
andci(t).0, agenti deposits its block.

The reason behind this rule will be clarified below as t
rules for movement are considered.

5. Rules for movement

The rules for movement att depend on whether the age
is carrying a block, i.e.,si(t)51.

Case I: Agent is free@si(t)50#. In this case, the agen
randomly chooses one of the eight possible directions
moves to the corresponding cell.

Case II: Agent is loaded@si(t)51#.
~1! If current position is empty@ l i(t)50#: The agent ran-

domly chooses one of the eight possible directions
moves to the corresponding cell. Note that one of the ca
where this condition occurs is when the agent picks up
item at l i(t) at time t.

~2! If current position is occupied@ l i(t)51#. We have the
following

~a! If this is first encounter with a new block grou
@ci(t)50#. We get the following facts

~i! If the block at l i(t) is isolated@i.e., v i k
3 (t)50 for k

51, . . . ,8] (a) The agent randomly chooses one of t
eight possible directions and moves to the correspond
cell, (b) ci(t11)5ci(t)50.

~ii ! If the block atl i(t) is not isolated@i.e., v i k
3 (t)51 for

somek51, . . . ,8] (a) the agent checks the neighbors
l i(t) in random order and moves to the first block-occup
cell it finds, (b) ci(t11)5ci(t)11.

In this case, the agent is moving along one block segm
passing throughl i(t).

~b! If this is not the first encounter with a new block grou
@ci(t).0#. We get the following facts

~i! The agent checks the neighbor ofl i(t) along direction
di(t) and to either side of it. These are termed theforward
view cells.

~ii ! If any of the forward view cells are block occupie
the agent moves to one of these occupied cells at rando

~iii ! If none of the forward view cells are block occupie
the agent moves to one of the three cells at random.

~iv! ci(t11)5ci(t)11.
After this move, ifl i(t11) is empty, the that indicates th

agent is in a cell adjacent to the end of a block segm
04611
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@since ci(t11).0]. This triggers a deposit, extending th
segment. And ifl i(t11) is block occupied, the agent ha
simply moved a step along the block segment being
lowed.

B. Stopping criteria

While the emergent structure develops rapidly duri
early stages of a simulation, change becomes very slow o
the vast majority of blocks are in locally viable arrang
ments. In order to obtain data in a reasonable length of ti
we set criteria to stop a simulation when it appears su
ciently close to structural convergence. The simulation st
if we have the following.

~1! No agent has picked up or deposited any items in
previous 500 iterations. This stopping criterion is used
the case whena50.

~2! More than 98% of the items are part of the large
cluster. Application of this stopping criterion involves per
odic checks ofM (t), the size of the largest cluster. It i
needed mainly whena.0, i.e., terminal blocks are picke
up with finite probability.

~3! The agents have reached a time limit. The time lim
used during all the simulations is 1 000 000 time steps. I
needed for very low block densities whena.0.

IV. RESULTS AND DISCUSSION

As indicated above, the structure obtained at the end
each simulation is analyzed in terms of clustering and,
particular, the size of the largest cluster. This correspond
the usual method in cases of percolation, where the lar
cluster or component is studied as a function of a param
and system size@16#. In this paper, the parameter of intere
is the block densityD5N/L2.

The behavior of the system is very different for thea
50 anda.0 cases, so we consider them separately.

A. Case I: aÄ0

In this case, agents do not pick up terminal blocks
segments they encounter. Thus, short, isolated block
ments are free to form and persist.

Figure 5 shows plots of the relative sizes5M /N, of the
largest cluster against block densityD for environments of
size L5100 andL5200. In both cases,s shows highly
nonlinear behavior with respect toD. The most noticeable
feature is an abrupt transition at a critical densityDc
'0.235, wheres increases from near 0 to near 1, indicatin
a phase transition@16#. The critical density in both cases i
the same, indicating size invariance. Also, as implied
theory, the transition is tending to become steeper with
creasingL. True criticality would, of course, be obtaine
only in the limit L→`.

Figure 6 shows an example of the block structure form
when block density is just below the critical value. In th
case,D50.2 ands50.10. The largest cluster is indicated b
the darker blocks, and is clearly much smaller than the s
of the system. Figure 7, in contrast, shows a structure form
with block density just above the critical threshold atD
1-5
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50.27. In this case, the empirical value ofs50.87, indicat-
ing that 87% of all blocks are members of it.

As is well known from percolation theory@16#, at the
critical threshold, cluster size scales as a power law with
size of the environment,L. Figure 8 plotsM as a function of
L at D50.235. The log-log plot shows excellent agreem
with a power law relationship,M;Lb, with b'1.95. The
value of b can be interpreted as a fractal dimension of
largest cluster@16#, and the empirical value we obtain is i
close agreement with those seen in well-known example
percolation in two-dimensional square lattices@18#.

FIG. 5. Largest cluster sizes as a function of block densityD
for a 1003100 environment~solid line! and a 2003200 environ-
ment ~dashed line!.

FIG. 6. Final block structure for a simulation withD50.2 for a
1003100 environment. The darker blocks indicate the largest c
ter.
04611
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Considering the results in Fig. 5 more closely, it is po
sible to distinguish three distinct regimes along theD axis:

Regime I. This regime occurs at extremely low block de
sities, and has as significantly higher than zero, though no
near 1. This is a finite-size effect due to the fact that clust
can only coalesce at sites that have groups of two or m
connected blocks in the initial distribution. We call the
seed sites. At very low block densities, the initial distribution
has only a very small number of seed sites that attract all
other isolated blocks. Since the absolute number of block
small, the largest cluster can easily acquire a significantfrac-
tion of blocks, leading to relatively larges values, even

-

FIG. 7. Final block structure for a simulation withD50.27 for
a 1003100 environment. The darker blocks indicate the larg
cluster.

FIG. 8. SizeM of largest cluster vs sizeL of the environment
with D50.235, the approximate critical density.
1-6
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though the absolute size of the cluster is very small.
expect this effect to disappear on much larger lattices,
indeed, Fig. 5 shows that it is weaker for theL5200 lattice
than for theL5100 lattice.

Regime II. This is the classic subpercolation regim
where the largest cluster is of insignificant relative size
occurs for low densities up to the percolation threshold. T
block density in this range is sufficient to create a large nu
ber of cluster seed sites in the initial distribution, all of whi
compete for the relatively small number of blocks. As a
sult, none of them can acquire a significant fraction
blocks.

Regime III. This is the percolation regime, where the in
tial seed sites are dense enough and the number of bl
large enough so that initially disconnected clusters can c
nect via the actions of the agents to form one large clus

It should be noted that the rules governing pickup a
depositing of blocks allow clusters to be broken up if they
not conform to certain characteristics~e.g., if a junction is
not acceptable under the rules of Fig. 3!. Thus, while clusters
can only begin at a seed site, not all seed sites g
clusters—some just break up. There is a continuous pro
of construction and destruction until the vast majority
blocks are in acceptable positions. When block density
relatively high, more and more blocks get into accepta
positions, making the destruction process increasingly w
and eventually leading to~near!convergence~see Fig. 10!.
However, when the block density is very low, accepta
positions for blocks are also rare, loaded agents wan
about for long periods looking for a deposit site, and t
process does not really converge. For this reason, in Fig
and 9~below!, we have plotted the largest cluster seen o
the duration of the simulation rather than the size at the e
For all but the lowest block densities, this makes no diff
ence, since the cluster size converges~see Fig. 10!, but at
very low D, the cluster size fluctuates significantly. Thu
data shown for these values form, at best, an upper boun
the mean size of the largest cluster.

FIG. 9. Cluster size as a function of block density fora50.1
~full circles!, a50.5 ~empty circles!, anda50.9 ~asterisks!.
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B. Case II: aÌ0

When agents are allowed to pick up terminal blocks,
system’s behavior changes dramatically, so that the fi
structure comprises a single large cluster except at very
block densities. Essentially, allowing small, isolated se
ments to be broken up ensures that all blocks have a ch
to move into the largest cluster.

Figure 9 shows the relative size of the largest cluster s
as a function ofD for a50.1, 0.5, and 0.9 in a 1003100
lattice. The subpercolation regime with very low cluster s
has contracted dramatically and virtually disappeared. Th
because the percolation threshold has become so low tha
a finite-sized lattice, the system goes from regime III~perco-
lation! to I instead of regime II. Thus, the blocks are able
coalesce into a small number of clusters, and the larges
these typically comprises a significant fraction of blocks d
to finite lattice size. As discussed earlier, clustering at v
low D is quite unstable. ForD<0.1, we ran simulations for
13106 time steps each, but the cluster size shown for th
values should be seen only as an upper bound. Also, for h
a andD<0.01, we were not able to obtain any clustering
all because the seed sites were broken up before cluste
could even begin. As the lattice sizeL→`, we expect thes
for extremely low densities to approach zero. However,
all densities above this very low threshold, only one dom
nant cluster exists.

Figure 10 shows the temporal evolution ofs in a particu-
lar simulation witha50.1 and two values ofD. Initially, the
structure is clumped into small clusters, but gradually alm
all blocks move into the dominant cluster, and cluster s
converges. It is noticeable hows does not increase mono
tonically, but undergoes occasional abrupt reductions re
niscent of an annealing process. These reductions are a
nature of the destructive processes that occasionally brea
clusters~as discussed above!.

Finally, Fig. 11 shows the time taken for 95% of blocks
theD50.3 case to join the largest cluster. This shows tha
takes longer for all the blocks to end up in one single clus

FIG. 10. Temporal evolution ofs when a50.1 andD50.15
~empty circles! and 0.2~filled circles!.
1-7
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whena increases. This may be due to the fact that at hig
values of a, segment terminals are being broken up a
rearranged too fast, thus reducing the chance that those
ment terminals could end up connecting other clusters. H
ever, Fig. 11 also shows that almost any probability of pi
ing up terminal segments is sufficient to ensure an alm
totally connected structure at thisD.

C. Segment terminals

An interesting aspect of the emergent structure that is
captured by cluster size is the way the block segments
connected. We consider whether a large fraction of segm
form ‘‘filaments’’ ~linear structures with one unattached te
minal! as opposed to ‘‘loops’’—in other words, to what d
gree is the graph of the structure ‘‘treelike.’’ We do this b
counting the numberl of unattached segment terminals
the final structure. Figure 12 shows howl/N varies asa
changes for two values ofD. Whena50, the relative count
of segment terminals is high, but it decreases quickly aa
increases. This may be explained by the fact that at h
values ofa, the segment terminals are being broken up a
rearranged a lot more than at lower values ofa. This in-
creases the chance that those segment terminals will en
forming loops, creating graphs with multiple paths betwe
locations.

FIG. 11. Mean clustering time (95% clustering! when
D50.3.
.
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V. CONCLUSION

In this paper, we have investigated the clustering prop
ties of structures formed by simple agents picking up a
depositing blocks in a lattice environment under simple,
cal rules. Our empirical findings indicate the occurrence o
phase transition in the self-organized structure. However,
phase transition changes dramatically if agents are allo
to preferentially destroy short, isolated block segments. T
ensures that all blocks become part of a single conne
structure except at very low densities . It should be noted
seeking—or even detecting—such global connectivity is
part of the agents’ behavioral rules, and no agent is awar
its existence. It is entirely an emergent phenomenon, aris
out of the application of local rules through a process
self-organization. We expect that the results presented
will be useful in the design and analysis of swarm-bas
methods for self-organized construction. The ability to obt
fully connected structures may well be the first requirem
for most other, more detailed construction algorithms, sin
connected structures can propagate information over l
distances via local communication. Such information pro
gation will be essential in order to obtain more controll
and regular structures such as those studied in amorp
computing@21–24#.

FIG. 12. Number of segment terminals,l, v/s a for a L5100
lattice whenD50.3 ~solid line! and 0.35~dashed line!.
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