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Phase transition in a swarm algorithm for self-organized construction
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This paper reports on a system where very simple, noncommunicating mobile agents in a (@attidar
environment use purely local rules to construct connected structures from initially randomly distributed build-
ing blocks. We study the effect of block density on the final structure, demonstrating a percolationlike phase
transition: Low block densities lead to the formation of small, disconnected structures but a single connected
structure emerges abruptly beyond a critical density. The empirical study of the structure at the transition point
shows scaling behavior, providing strong evidence for criticality. We also demonstrate that a simple change of
rules can completely change the phase-transition effect. The results have implications for the self-organized
construction of complex structures by swarms.
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[. INTRODUCTION Such random structures may also have potential use as scaf-
folding in the swarm-based construction of more complex
Recently, there has been considerable interest by physstructures. Here, we focus on the abstract problem and report
cists, biologists, computer scientists, and engineers in then some interesting characteristics of the emergent structures
study of swarm-based algorithms for a variety of applica-produced by the algorithm. In particular, we show that the
tions [1], including the formation of emergent structures system exhibits a phase transition and the accompanying
[2—-6]. The swarm approach, inspired by insect coloniesscaling behavior—a fact that may have implications for the
seeks methods by which simple, locally informed behaviorsuccess or failure of swarm-based construction algorithms in
by a large number of simple agents can lead to the emearious settings.
gence of large-scale, complex organization. Such self-
organization is thought to underlie the construction of struc-
tures such as termite and ant nef2s-6], the formation of Il. BACKGROUND
near-optimal foraging patterns in ant8], and the efficient
and flexible task allocation seen in many insect colonies Pattern formation is one of the classic problems studied in
[9,10]. Swarm-based algorithms have several features thdahe swarm literatur¢l]. Rauchet al. [15] showed that ant-
make them attractive for new technologies such as smaiike agents following simple rules for depositing and follow-
materials, collective and reconfigurable robots, self-ing an evaporating pheromone could, under some conditions,
assembling structures, and adaptive sensor networks. The a@keate networks of paths such as those seen in real ant colo-
gorithms are inherently robust, scalable, flexible, and easilyies. They also showed that the model system underwent
extended. Also, by using very large numbers of simpled  sharp bifurcationgphase transitionsas some of its param-
therefore chegpagents rather than a few complénd ex- eters were changed. Other work on swarm-based construc-
pensivg ones, swarm algorithms promise economies of scaléion has also shown that the emergent structures can depend
that will be necessary for many of the aforementioned techfundamentally and qualitatively on system paramef@rs.
nologies. Our results are especially relevant in the area dh the present work, we show another example of such tran-
collective robotic§11-14], where large numbers of autono- sition in the context of an extended spatial structure. By
mous robots act cooperatively to accomplish tasks such ashoosing an especially simple type of structure, we are able
search, exploration, mapping, and construction. to use the framework of percolation thediy6] and scaling
In this paper, we report on a simple swarm technique fof17,18 to show quantitative evidence of structural phase
the construction of connected, locally linear structures bytransition in our system. Classical percolation theory has
“myopic” agents, i.e., agents that are only aware of systembeen concerned mainly with static random structures,
state in their immediate spatial vicinity and do not considemwhereas the structures we study are built over time by agents
long-term payoff in their decision-making. While of little following rules. In this sense, the present work is much more
obvious utility in their current abstract and simplistic form, akin to the other studies of scaling in emergent structures
such structures can form the basis of more useful ones sucuch as networksl 9], bacterial colonies, and material aggre-
as might be needed by groups of robots engaged in the corateq 20]. It is also closely related to—and relevant for—the
struction of sensing, communication, or traffic networks.currently active area of amorphous computii], where
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computational structures are built via self-organizafidb—  eN(x;,y;) such that, is connected td, . If b; is connected
24). to b thenb, is also connected tb;. The relationship is
There is also a significant body of work on the self- denoted byb;<b,. Note that connectedness is also transi-
organization of robot swarms into regular formations such asive, sob;«< by andby« b, impliesb;<b;.
lines, circles, and polygon®5-27. Our work is peripher- Each agent has aloading state gt) {0,1} at timet,
ally related to this since we consider the patterns constructe@here s;(t)=0 indicates that the agent is not carrying a
by agents using building materials rather than relationshipglock ands;(t)=1 indicates that it is. The agent’s position at
among the agents themselves. Indeed, as described belogvept is given byl;(t) = (x;(t),y;(t)).
our agents are oblivious to other agents and all communica- The emergent structure is evaluated for its size and con-
tion in the system occurs through the pattern being connectivity. In particular, acluster B within the structure is
structed. In the swarm and collective robotics literature, thigefined as a set of blocl{b}‘} such tha(1) every block inBX
is known asstigmergy{11], and is believed to underlie most s connected to every other block in the set, &idho block
construction in insect coloniel]. Stigmergy has several in the set is connected to any block notBY. The sizeof
desirable features from an applications viewpoint: It is inher-|ysterB* equals the number of blocks in it, and is denoted
ently decentralized and, therefore, scalable; it works witl]Bk|_ Note that, at any time, the set of all clusters forms a
simple agents that need no communication devices or infrgyartition of B: U,B*=B, andBXNBX2=® V k,#k,. The

structure, reducing cost; and it is unobtrusive, since N0 cOMsjze of the largest cluster at timiés denoted byM(t), and
munication traffic is generated. The main drawback is thalihe sjze of the largest cluster in the final structure is denoted
by giving up the option to communicate, agents can NGy M. We study the quantityr=M/N—the fraction of
longer engage in explicit coordination and planning. How-pjocks that are ‘included in the largest final cluster—and

ever, in ftruly large-scale swarms or ftruly simple agentSgnoy that, under certain conditions,shows a phase transi-
bandwidth and cost constraints would make stigmergy they, at a critical block density.

only feasible option—perhaps in combination with diffusive
signaling. A. Rules for pickup and deposit

We assume that, at any time, an agent can observe the
lll. SYSTEM DESCRIPTION distribution of blocks in a X5 square neighborhood cen-
tion of connected, locally linear structures by locally aware, 33 neighborhood, and the full range of observation is used
noncommunicating mobile agents following simple rules. ©nly in a few special cases. Rules for pickup and deposit are
picking up and depositingplocks of material based on the thgat would tglgger the corresponding action. Ttheee-view
state of their local neighborhood. The total number of blocki (t) €1{0,1;" of agent at timet |53the occupancy state of its
in the system is fixed, and is denoted Ry giving ablock  3X3 neighborhood. Each bit af(t) corresponds to a cell
density D=N/L?2, which is the primary parameter of interest. in the neighborhood, with a 1 indicating the presence of a
The set of all blocks is denoted Wy={b;}. Initially, the  block. The first bitv?ozvi(t) corresponds to the agent’s cur-

blocks and agents are distributed randomly over the grid. Ifent location, and the remaining bits are indexed clockwise
an agent occupies a grid cell with a block, it qaink up the  starting from the north bit. Théive-viewo?(t) is defined
block. If an agent carrying a block is in a grid cell with no similarly for the agent's %5 neighborhood, with the inner

block, it candepositthe block it is carrying. Both pickup and . ; _.5
depositing are governed by rules as described below. Thgng indexed before. th_e outer ring. Note th%(t) U'O(t)
objective is to arrange the blocks such that they form a con= Vi(t) = @1,(t); this is termed the occupancy state of the
nected, locally linear structure covering the environment aggent’s current position.
evenly as possible. However, because the rules are triggered o
purely by the agents’ local view, the global characteristics of 1. Agent movements and decisions
the final block distribution must be emergent rather than the Agents move asynchronously and independently, with
result of a global optimization process. two agents allowed to occupy the same location simulta-
Each cell &,y) in the environment haslalock occupancy neously. To ensure that all agents are updated regularly while
state w, ,(t), which is 1 if the position has a block and 0 maintaining asynchronicity, the following update procedure
otherwise. Cell X,y) also has amagent occupancy state is used.
&xy(1), which is an integer indicating the number of agents An update cycle indexed byT, is defined as a pass
in cell (x,y). The eight cells surroundingk(y) are termed through the entire agent population, updating the state of
its neighborhoogd denoted byN(X,y). each agent based on therrentstate of the environment and
A block bj in cell (x;,y;) is said to be aeighborof a  other agents, i.e., including previous updates within the cur-
block by in cell (xq,yy) if (x;,y;) e N(Xk,yy) [which also rent update cycle. Thus, an update cycle consists Gfne
implies that &,yi) € N(x;,y;)]. This relationship is de- steps, indexed by=1,2, ... N. Agents are selected for up-
noted byb;« by. datein random orderduring each update cycle. This ensures
A block b; in cell (x;,y;) is said to beconnectedio a  that every agent is updated at least once in any window of
block b, in cell (x;,y;) if (1) bj«b, or (2) 3 b, 2N—-1 update steps without creating fixed order effects.
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Overall, time in the system is indexed hy with t=(T
—1)N+ 7. An agenti selected for update at stéfis termed

a live agent and goes through the following steps in se-
quence.

(1) Pickup decision: If the agent is not carrying a block,
i.e.,s(t—1)=0, and its current positioh(t) is occupied by
an unpicked block, i.ew|i(t)(t— 1)=1, it makes a decision
on whether to pick up the block. If the decision is to pick up,

si(h=1, w ) (1)=0
else
sih=si(t=1), o mt)=w@(t=1).

If the agent is already carrying a block, i.e,(t—1)=1,
there is no possibility of pickup. In that case,

mrAET
A a4+
Bl Ll

Si(t):Si(t_l), w|i(t)(t)=w|i(t)(t—1). ) ) . o .
FIG. 1. Maps triggering pickup to inhibit blob formation.

(2) Deposit decision: If the agent is carrying a block, i.e.,

si(t—1)=1, and its current position;(t) is empty, i.e., The overall goal—not explicitly known to agents—is to
o ry(t—1)=0, it makes a decision on whether to deposit itsarrange the blocks in a connected meshlike structure. The
block at the new position. If the decision is to deposit, agents focus on placing blocks so as to form locally linear
structures. The linear structures should not have any sharp
si(t)=0, w,i(t)(t)=1 corners except at segment junctions. To this end, gy
pick up blocks that are isolated or are redundant for local
else connectivity, and2) deposit blocks to extend existing locally
linear structures they come across. An agent coming upon a
si()=si(t—1), o ut)=w, @yt-1). block picks it up if it is part of one of the disallowed local

arrangements of blocks. It then carries the block until it
If the agent is not carrying a block, i.e{t—1)=0, thereis comes upon a connected linear filament of blocks. It follows

no possibility of deposit. In that case, this filament until the end and then extends it by depositing
its own block. It then moves off to look for another block.
si()=si(t—1), @ (t)=w g(t—1). These rules are described formally in the following three
' ' sections.
(3) Move decision and action: The possible moves for

agenti are to the eight positions adjacentl{¢t). The pos- 3. Rules for pickup

sible directions of movement comprise the set{m,} : . . - .

={1,...,8, indicating directions clockwise wittn,=1 for Pickup is considered only when ageris not carrying a

block and encounters a block at its current site.

The pickup decision can be expressed in terms of six
mulus-response rules. The triggering conditions for the
rules are checked in the order given and the first condition to
be satisfied produces the agent response. Conditions follow-
ing this do not then need to be checked. Figures 1-4 show
the triggering conditions for block pickup as neighborhood
maps. In the maps, the grid position being considered for
pickup is at the center, which is also where the agent is
located. The conventions used for triggering conditions are
as follows.

the cell to the north. The agent chooses directipft) e m
and moves to the corresponding position, which is denotegti
by I;(t+1). The variabled;(t) is termed thenove direction
for the agent at time.

The choice ofd;(t) depends on the agent’s state, as de
scribed below.

For agentg not selected for update at tintes;(t) = s;(t
—1) andd;(t)=d;(t—1).

Each agent has two types of memonrydisection memory
and acounter memoryAt the beginning of the simulation,
both memories are empty. The direction memorg;{g), the (1) Figure 1: To satisfy a triggering condition, black

direction of the agent’s last move, and the counter MeMOry ares must be loccupied, gray squares must be @n-

ci(t) keeps track of the number of steps since the agent la%ccupied, and white squares may be in any occupancy state
encountered an empty cell. (*don't care”).

(2) Figure 2: To satisfy a triggering condition, black
squares must be (occupied, at least one of each triplet of

Before giving a formal description of the algorithm, we gray squares must be(bccupied, and white squares may be
give a brief qualitative description. in any occupancy stat¢don’t care”).

2. Summary of the algorithm
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FIG. 4. Map configurations indicating segment terminals. The
terminal block is picked up with probability.

w ol N b

-
L e
n:

ﬁ I
[ ]
courage the formation of blobs—groups of blocks with re-

FIG. 2. Maps suppressing pickup to promote formation of longdundant connectivity.
block segments. (3) If v2(t) corresponds to one of the maps in Fig. 2, the
agent does not pick up the center block. Note that, according
K to the convention mentioned above, a triggering configura-
tion in Fig. 2 is satisfied only when at least one block is
present in each of its two gray cell triplets. The purpose here
is to encourage the formation of long block segments that do
) ) not have any sharp corners. This will reduce the chance of
squares must be (occupied, _at least one of each triplet of loops being formed and therefore encourage the block seg-
gray squares must be(bccupied, and white squares may be ents to span the entire map even at low densities.
in any occupancy statdon't care”)._ . " (4) If v3(t) corresponds to one of the maps in Fig. 3, the
It should be noted that all the triggering conditions areagent does not pick up the new block. The purpose of this

baseq ori_ocal VIEWS, Wh'.Ch IS an important aspect of self- rule is to encourage the formation of appropriately efficient
organization. The following rules are applied in sequence(I e, nonredundainlblock segment junctions.

e e e o (5147 cortesponds o ne of e maps i i, & e
g 99 PP agent does not pick up the center block with probability 1

as follows. o . 3 —a and picks it up with probabilityr, wherea is a fixed
(1) If the block atl;(t) is isolated]i.e., vik(t)_o for k parameter. After the exclusions specified by Figs. 1-3, the
=1,. 8] theagent picks up the center block. configurations in Fig. 4 are triggered only when the central
) It v(t) corresponds to one of the maps in Fig. 1, theplock is the last or the last-but-one block on a segment. Thus,
agent DICkS up the center block. The purpose here is to disvhena>0, terminal blocks tend to get picked up. Terminal
blocks of all segments can be picked up, but such blocks

represent a larger fraction of very short segments, and these
are disrupted preferentially. Thug,>0 suppresses the pro-
liferation of short segments. The parameter is of primary
interest in the work reported here.

(6) Agent picks up the block in all the other situations.

The intuition behind the rules triggering and suppressing
pickup is the following. Fig. 2 rules suppress pickup when
the current block could form part of a viable line. However,
the rules are sufficiently redundant that they also suppress
pickup in some situations that produce bloblike structures.

The pickup triggers in Fig. 1 eliminate these situations pre-
emptively, since the pickup based on Fig. 1 is applied before
suppression of pickup based on Fig. 2. The suppression rules
in Fig. 3 protect desirable junction formations. The pickup

triggers in Fig. 1 and pickup suppressors in Fig. 3 are mutu-

FIG. 3. Maps suppressing pickup to promote formation of blockally exclusive, so the junction configurations are not pre-
segment junctions. empted by Fig. 1 rules. However, excess blocks around the

(3) Figure 3: To satisfy a triggering condition, blac
squares must be foccupied and white squares may be in
any occupancy statgdon't care”).

(4) Figure 4: To satisfy a triggering condition, black
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junction are removed by Fig. 1 pickups. The heuristic underfsince c;(t+1)>0]. This triggers a deposit, extending the
lying the selection of certain junctions is that each junctionsegment. And ifl;(t+1) is block occupied, the agent has
should be the confluence of three branctres foun, and the  simply moved a step along the block segment being fol-
branches should be as well separated as possible around tlogved.

junction point.

B. Stopping criteria

4. Rules for deposit While the emergent structure develops rapidly during

Deposit is considered only when agents carrying a  early stages of a simulation, change becomes very slow once
block and the current location is empty. the vast majority of blocks are in locally viable arrange-

The condition for depositing a block depends on both arments. In order to obtain data in a reasonable length of time,
agent’s view and its recent experience as given by its direcwe set criteria to stop a simulation when it appears suffi-
tion and counter memories. Essentially, an agent carrying aiently close to structural convergence. The simulation stops
block tries to locate a continuous line of blocks, moves alongf we have the following.

it until it reaches the end, and then deposits its block. (1) No agent has picked up or deposited any items in the
The rule for deposit is that: if (t) =0 (cell has no block  previous 500 iterations. This stopping criterion is used for
andc;(t)>0, agent deposits its block. the case whem=0.
The reason behind this rule will be clarified below as the (2) More than 98% of the items are part of the largest
rules for movement are considered. cluster. Application of this stopping criterion involves peri-
odic checks ofM(t), the size of the largest cluster. It is
5. Rules for movement needed mainly whea>0, i.e., terminal blocks are picked

up with finite probability.
_ The rules for movement atdepend on whether the agent ~ (3) The agents have reached a time limit. The time limit
is carrying a block, i.e.s;(t)=1. used during all the simulations is 1 000 000 time steps. It is

Case I: Agent is fre¢s;(t)=0]. In this case, the agent needed for very low block densities when>0.
randomly chooses one of the eight possible directions and

moves to the corresponding cell.
Case ll: Agent is loadefls;(t)=1].
(1) If current position is emptyl;(t)=0]: The agent ran- As indicated above, the structure obtained at the end of
domly chooses one of the eight possible directions an@ach simulation is analyzed in terms of clustering and, in
moves to the corresponding cell. Note that one of the casgsarticular, the size of the largest cluster. This corresponds to
where this condition occurs is when the agent picks up athe usual method in cases of percolation, where the largest
item atl;(t) at timet. cluster or component is studied as a function of a parameter
(2) If current position is occupiefd;(t)=1]. We have the and system sizgl6]. In this paper, the parameter of interest
following is the block densityD =N/L?.
(a) If this is first encounter with a new block group  The behavior of the system is very different for the
[ci(t)=0]. We get the following facts =0 anda>0 cases, so we consider them separately.
(i) If the block atl;(t) is isolated[i.e., vf’k(t)=0 for k
=1,...,8] (@) The agent randomly chooses one of the A. Case |: =0
eight possible directions and moves to the corresponding |, this case, agents do not pick up terminal blocks in
cell, (B) ci(t+1)=c;()=0. _ . segments they encounter. Thus, short, isolated block seg-
(ii) If the block atl;(t) is not isolatedi.e., v; (t)=1 for  ments are free to form and persist.
somek=1,...,8] («) the agent checks the neighbors of Figure 5 shows plots of the relative siae= M/N, of the
[;(t) in random order and moves to the first block-occupiedargest cluster against block denskyfor environments of
cell it finds, (8) ¢;(t+1)=c;(t)+1. size L=100 andL=200. In both casesy shows highly
In this case, the agent is moving along one block segmentonlinear behavior with respect . The most noticeable
passing through;(t). feature is an abrupt transition at a critical densly
(b) If this is not the first encounter with a new block group ~0.235, wherer increases from near 0 to near 1, indicating
[ci(t)>0]. We get the following facts a phase transitiohl6]. The critical density in both cases is
(i) The agent checks the neighborlet) along direction the same, indicating size invariance. Also, as implied by
d;(t) and to either side of it. These are termed thevard  theory, the transition is tending to become steeper with in-
view cells creasingL. True criticality would, of course, be obtained
(i) If any of the forward view cells are block occupied, only in the limit L—oo.
the agent moves to one of these occupied cells at random. Figure 6 shows an example of the block structure formed
(iii ) If none of the forward view cells are block occupied, when block density is just below the critical value. In this
the agent moves to one of the three cells at random. caseD=0.2 ando=0.10. The largest cluster is indicated by
(iv) ¢i(t+1)=c;(t) +1. the darker blocks, and is clearly much smaller than the size
After this move, ifl;(t+1) is empty, the that indicates the of the system. Figure 7, in contrast, shows a structure formed
agent is in a cell adjacent to the end of a block segmentith block density just above the critical threshold @&t

IV. RESULTS AND DISCUSSION
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FIG. 5. Largest cluster size as a function of block densitip
for a 100x 100 environmenf{solid line) and a 20 200 environ-

ment(dashed ling

=0.27. In this case, the empirical value ®&0.87, indicat-

ing that 87% of all blocks are members of it.

As is well known from percolation theor{16], at the

FIG. 7. Final block structure for a simulation with=0.27 for
a 100<100 environment. The darker blocks indicate the largest
cluster.

critical threshold, cluster size scales as a power law with the
size of the environment,. Figure 8 plotdM as a function of

L at D=0.235. The log-log plot shows excellent agreement
with a power law relationshipyl ~L#, with B~1.95. The
value of 8 can be interpreted as a fractal dimension of the

Considering the results in Fig. 5 more closely, it is pos-
sible to distinguish three distinct regimes along bhexis:
Regime I This regime occurs at extremely low block den-

largest clustef16], and the empirical value we obtain is in Siti€S and has & significantly higher than zero, though not

close agreement with those seen in well-known examples di

percolation in two-dimensional square lattidas).

ear 1. This is a finite-size effect due to the fact that clusters
can only coalesce at sites that have groups of two or more
connected blocks in the initial distribution. We call these
seed sitesAt very low block densities, the initial distribution
has only a very small number of seed sites that attract all the
other isolated blocks. Since the absolute number of blocks is
small, the largest cluster can easily acquire a signifitraiat

tion of blocks, leading to relatively larger values, even

2 1 1 1 1 1

2.2 2.4 2.6 2.8
log, (L)

FIG. 6. Final block structure for a simulation with=0.2 for a

100X 100 environment. The darker blocks indicate the largest clus-

ter.

FIG. 8. SizeM of largest cluster vs sizk of the environment
with D=0.235, the approximate critical density.
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FIG. 9. Cluster size as a function of block density tor0.1
(full circles), a=0.5 (empty circle$, and o= 0.9 (asterisks

FIG. 10. Temporal evolution o when a«=0.1 andD=0.15
(empty circle$ and 0.2(filled circles.

though the absolute size of the cluster is very small. We
expect this effect to disappear on much larger lattices, and

indeed, Fig. 5 shows t_hat it is weaker for the-200 lattice system’s behavior changes dramatically, so that the final
than for thel = 100 lattice. _ _ ~ structure comprises a single large cluster except at very low
Regime Il This is the classic subpercolation regime, piock densities. Essentially, allowing small, isolated seg-
where the largest cluster is of insignificant relative size. Itments to be broken up ensures that all blocks have a chance
occurs for low densities up to the percolation threshold. Theo move into the largest cluster.
block density in this range is sufficient to create a large num-  Figure 9 shows the relative size of the largest cluster size
ber of cluster seed sites in the initial distribution, all of which as a function oD for «=0.1, 0.5, and 0.9 in a 100100
compete for the relatively small number of blocks. As a re-lattice. The subpercolation regime with very low cluster size
sult, none of them can acquire a significant fraction ofhas contracted dramatically and virtually disappeared. This is
blocks. because the percolation threshold has become so low that, in
Regime Il This is the percolation regime, where the ini- a finite-sized lattice, the system goes from regimeép#rco-
tial seed sites are dense enough and the number of blockgtion) to | instead of regime II. Thus, the blocks are able to
large enough so that initially disconnected clusters can corneoalesce into a small number of clusters, and the largest of
nect via the actions of the agents to form one large clusterthese typically comprises a significant fraction of blocks due
It should be noted that the rules governing pickup ando finite lattice size. As discussed earlier, clustering at very
depositing of blocks allow clusters to be broken up if they dolow D is quite unstable. FoD<0.1, we ran simulations for
not conform to certain characteristi¢s.g., if a junction is 1< 10° time steps each, but the cluster size shown for these
not acceptable under the rules of Fig. Bhus, while clusters values should be seen only as an upper bound. Also, for high
can only begin at a seed site, not all seed sites grow andD=0.01, we were not able to obtain any clustering at
clusters—some just break up. There is a continuous procesdl because the seed sites were broken up before clustering
of construction and destruction until the vast majority of could even begin. As the lattice sike—, we expect ther
blocks are in acceptable positions. When block density igor extremely low densities to approach zero. However, for
relatively high, more and more blocks get into acceptableall densities above this very low threshold, only one domi-
positions, making the destruction process increasingly weakRant cluster exists.
and eventually leading téneajconvergencesee Fig. 1D Figure 10 shows the temporal evolution®fin a particu-
However, when the block density is very low, acceptablelar simulation witha=0.1 and two values db. Initially, the
positions for blocks are also rare, loaded agents wandestructure is clumped into small clusters, but gradually almost
about for long periods looking for a deposit site, and theall blocks move into the dominant cluster, and cluster size
process does not really converge. For this reason, in Figs. &onverges. It is noticeable how does not increase mono-
and 9(below), we have plotted the largest cluster seen ovetonically, but undergoes occasional abrupt reductions remi-
the duration of the simulation rather than the size at the enchiscent of an annealing process. These reductions are a sig-
For all but the lowest block densities, this makes no differ-nature of the destructive processes that occasionally break up
ence, since the cluster size convergsese Fig. 10 but at  clusters(as discussed aboye
very low D, the cluster size fluctuates significantly. Thus, Finally, Fig. 11 shows the time taken for 95% of blocks in
data shown for these values form, at best, an upper bound ahe D =0.3 case to join the largest cluster. This shows that it
the mean size of the largest cluster. takes longer for all the blocks to end up in one single cluster

B. Case Il: >0

When agents are allowed to pick up terminal blocks, the
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FIG. 11. Mean clustering time (95% clusterjingvhen FIG. 12. Number of segment terminals, v/s a for a L=100
D=0.3. lattice whenD =0.3 (solid line) and 0.35(dashed ling

when«a increases. This may be due to the fact that at higher
values of @, segment terminals are being broken up and
rearranged too fast, thus reducing the chance that those seg-In this paper, we have investigated the clustering proper-
ment terminals could end up connecting other clusters. Howties of structures formed by simple agents picking up and
ever, Fig. 11 also shows that almost any probability of pick-depositing blocks in a lattice environment under simple, lo-
ing up terminal segments is sufficient to ensure an almosgal rules. Our empirical findings indicate the occurrence of a
totally connected structure at thix phase transition in the self-organized structure. However, this
phase transition changes dramatically if agents are allowed
to preferentially destroy short, isolated block segments. This
An interesting aspect of the emergent structure that is noghsures that all blocks become part of a single connected
captured by cluster size is the way the block segments arsiructure except at very low densities . It should be noted that
connected. We consider whether a large fraction of segmenggeking—or even detecting—such global connectivity is not
form “filaments” (linear structures with one unattached ter- part of the agents’ behavioral rules, and no agent is aware of
minal) as opposed to “loops”—in other words, to what de- its existence. It is entirely an emergent phenomenon, arising
gree is the graph of the structure “treelike.” We do this by out of the application of local rules through a process of
counting the numbek of unattached segment terminals in self-organization. We expect that the results presented here
the final structure. Figure 12 shows howN varies ase  will be useful in the design and analysis of swarm-based
changes for two values @. Whena =0, the relative count methods for self-organized construction. The ability to obtain
of segment terminals is high, but it decreases quicklyras fully connected structures may well be the first requirement
increases. This may be explained by the fact that at higlior most other, more detailed construction algorithms, since
values ofa, the segment terminals are being broken up andconnected structures can propagate information over long
rearranged a lot more than at lower valuesaof This in-  distances via local communication. Such information propa-
creases the chance that those segment terminals will end g@tion will be essential in order to obtain more controlled
forming loops, creating graphs with multiple paths betweerand regular structures such as those studied in amorphous

V. CONCLUSION

C. Segment terminals
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